1,421 research outputs found

    Control system design using optimization techniques Final report

    Get PDF
    Optimization techniques for control of fuel valve systems for air breathing jet engines and 40-60 inlet control problem

    Cloning of terminal transferase cDNA by antibody screening

    Get PDF
    A cDNA library was prepared from a terminal deoxynucleotidyltransferase-containing thymoma in the phage vector λgt11. By screening plaques with anti-terminal transferase antibody, positive clones were identified of which some had β-galactosidase-cDNA fusion proteins identifiable after electrophoretic fractionation by immunoblotting with anti-terminal transferase antibody. The predominant class of cross-hybridizing clones was determined to represent cDNA for terminal transferase by showing that one representative clone hybridized to a 2200-nucleotide mRNA in close-matched enzyme-positive but not to enzyme-negative cells and that the cDNA selected a mRNA that translated to give a protein of the size and antigenic characteristics of terminal transferase. Only a small amount of genomic DNA hybridized to the longest available clone, indicating that the sequence is virtually unique in the mouse genome

    Multi-wavelength modeling of the spatially resolved debris disk of HD 107146

    Get PDF
    (abridged) We aim to constrain the location, composition, and dynamical state of planetesimal populations and dust around the young, sun-like (G2V) star HD 107146}. We consider coronagraphic observations obtained with the Advanced Camera for Surveys (HST/ACS) onboard the HST in broad V and broad I filters, a resolved 1.3mm map obtained with the Combined Array for Research in Millimeter-Wave Astronomy (CARMA), Spitzer/IRS low resolution spectra, and the spectral energy distribution (SED) of the object at wavelengths ranging from 3.5micron to 3.1mm. We complement these data with new coronagraphic high resolution observations of the debris disk using the Near Infrared Camera and Multi-Object Spectrometer (HST/NICMOS) aboard the HST in the F110W filter. The SED and images of the disk in scattered light as well as in thermal reemission are combined in our modeling using a parameterized model for the disk density distribution and optical properties of the dust. A detailed analytical model of the debris disk around HD 107146 is presented that allows us to reproduce the almost entire set of spatially resolved and unresolved multi-wavelength observations. Considering the variety of complementary observational data, we are able to break the degeneracies produced by modeling SED data alone. We find the disk to be an extended ring with a peak surface density at 131AU. Furthermore, we find evidence for an additional, inner disk probably composed of small grains released at the inner edge of the outer disk and moving inwards due to Poynting-Robertson drag. A birth ring scenario (i.e., a more or less broad ring of planetesimals creating the dust disk trough collisions) is found to be the most likely explanation of the ringlike shape of the disk.Comment: 15 pages, 9 figures, accepted for publication in A&

    The Formation and Evolution of Planetary Systems: Description of the Spitzer Legacy Science Database

    Get PDF
    We present the science database produced by the Formation and Evolution of Planetary Systems (FEPS) Spitzer Legacy program. Data reduction and validation procedures for the IRAC, MIPS, and IRS instruments are described in detail. We also derive stellar properties for the FEPS sample from available broad-band photometry and spectral types, and present an algorithm to normalize Kurucz synthetic spectra to optical and near-infrared photometry. The final FEPS data products include IRAC and MIPS photometry for each star in the FEPS sample and calibrated IRS spectra.Comment: 64 pages, 12 figures, 5 tables; accepted for publication in ApJ

    Witnessing eigenstates for quantum simulation of Hamiltonian spectra

    Get PDF
    The efficient calculation of Hamiltonian spectra, a problem often intractable on classical machines, can find application in many fields, from physics to chemistry. Here, we introduce the concept of an "eigenstate witness" and through it provide a new quantum approach which combines variational methods and phase estimation to approximate eigenvalues for both ground and excited states. This protocol is experimentally verified on a programmable silicon quantum photonic chip, a mass-manufacturable platform, which embeds entangled state generation, arbitrary controlled-unitary operations, and projective measurements. Both ground and excited states are experimentally found with fidelities >99%, and their eigenvalues are estimated with 32-bits of precision. We also investigate and discuss the scalability of the approach and study its performance through numerical simulations of more complex Hamiltonians. This result shows promising progress towards quantum chemistry on quantum computers.Comment: 9 pages, 4 figures, plus Supplementary Material [New version with minor typos corrected.

    The Circumstellar Disk of HD 141569 Imaged with NICMOS

    Get PDF
    Coronagraphic imaging with the Near Infrared Camera and Multi Object Spectrometer on the Hubble Space Telescope reveals a large, ~400 AU (4'') radius, circumstellar disk around the Herbig Ae/Be star HD 141569. A reflected light image at 1.1 micron shows the disk oriented at a position angle of 356 +/- 5 deg and inclined to our line of sight by 51 +/- 3 deg; the intrinsic scattering function of the dust in the disk makes the side inclined toward us, the eastern side, brighter. The disk flux density peaks 185 AU (1.''85) from the star and falls off to both larger and smaller radii. A region of depleted material, or a gap, in the disk is centered 250 AU from the star. The dynamical effect of one or more planets may be necessary to explain this morphology.Comment: 4 pages, LaTeX with emulateapj.sty and epsfig.sty, 4 postscript figures, Accepted to ApJ Letter

    Resummation of the Divergent Perturbation Series for a Hydrogen Atom in an Electric Field

    Get PDF
    We consider the resummation of the perturbation series describing the energy displacement of a hydrogenic bound state in an electric field (known as the Stark effect or the LoSurdo-Stark effect), which constitutes a divergent formal power series in the electric field strength. The perturbation series exhibits a rich singularity structure in the Borel plane. Resummation methods are presented which appear to lead to consistent results even in problematic cases where isolated singularities or branch cuts are present on the positive and negative real axis in the Borel plane. Two resummation prescriptions are compared: (i) a variant of the Borel-Pade resummation method, with an additional improvement due to utilization of the leading renormalon poles (for a comprehensive discussion of renormalons see [M. Beneke, Phys. Rep. vol. 317, p. 1 (1999)]), and (ii) a contour-improved combination of the Borel method with an analytic continuation by conformal mapping, and Pade approximations in the conformal variable. The singularity structure in the case of the LoSurdo-Stark effect in the complex Borel plane is shown to be similar to (divergent) perturbative expansions in quantum chromodynamics.Comment: 14 pages, RevTeX, 3 tables, 1 figure; numerical accuracy of results enhanced; one section and one appendix added and some minor changes and additions; to appear in phys. rev.

    Structure and Composition of Two Transitional Circumstellar Disks in Corona Australis

    Get PDF
    The late stages of evolution of the primordial circumstellar disks surrounding young stars are poorly understood, yet vital to constrain theories of planet formation. We consider basic structural models for the disks around two ~10 Myr-old members of the nearby RCrA association, RX J1842.9-3532 and RX J1852.3-3700. We present new arcsecond-resolution maps of their 230 GHz continuum emission from the Submillimeter Array and unresolved CO(3-2) spectra from the Atacama Submillimeter Telescope Experiment. By combining these data with broadband fluxes from the literature and infrared fluxes and spectra from the catalog of the Formation and Evolution of Planetary Systems (FEPS) Legacy program on the Spitzer Space Telescope, we assemble a multiwavelength data set probing the gas and dust disks. Using the Monte Carlo radiative transfer code RADMC to model simultaneously the SED and millimeter continuum visibilities, we derive basic dust disk properties and identify an inner cavity of radius 16 AU in the disk around RX J1852.3-3700. We also identify an optically thin 5 AU cavity in the disk around RX J1842.9-3532, with a small amount of optically thick material close to the star. The molecular line observations suggest an intermediate disk inclination in RX J1842.9-3532, consistent with the continuum emission. In combination with the dust models, the molecular data allow us to derive a lower CO content than expected, suggesting that the process of gas clearing is likely underway in both systems, perhaps simultaneously with planet formation.Comment: 11 pages, 5 figures, accepted for publication in A
    • …
    corecore